A Graduated Nonconvex Regularization for Sparse High Dimensional Model Estimation
نویسندگان
چکیده
Many high dimensional data mining problems can be formulated as minimizing an empirical loss function with a penalty proportional to the number of variables required to describe a model. We propose a graduated non-convexification method to facilitate tracking of a global minimizer of this problem. We prove that under some conditions the proposed regularization problem using the continuous piecewise linear approximation is equivalent to the original 0 l regularization problem. In addition, a family of graduated nonconvex approximations are proposed to approximate its 1 l continuous approximation. Computational results are presented to illustrate the performance.
منابع مشابه
Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease
Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملSparse Reduced Rank Regression With Nonconvex Regularization
In this paper, the estimation problem for sparse reduced rank regression (SRRR) model is considered. The SRRR model is widely used for dimension reduction and variable selection with applications in signal processing, econometrics, etc. The problem is formulated to minimize the least squares loss with a sparsity-inducing penalty considering an orthogonality constraint. Convex sparsity-inducing ...
متن کاملHigh dimensional thresholded regression and shrinkage effect
High dimensional sparse modelling via regularization provides a powerful tool for analysing large-scale data sets and obtaining meaningful interpretable models.The use of nonconvex penalty functions shows advantage in selecting important features in high dimensions, but the global optimality of such methods still demands more understanding.We consider sparse regression with a hard thresholding ...
متن کاملSparse Regularization for High Dimensional Additive Models
We study the behavior of the l1 type of regularization for high dimensional additive models. Our results suggest remarkable similarities and differences between linear regression and additive models in high dimensional settings. In particular, our analysis indicates that, unlike in linear regression, l1 regularization does not yield optimal estimation for additive models of high dimensionality....
متن کامل